UCD Biomedical Engineering

Dr Stephen Redmond

Biomedical Engineering (NBS1) Programme Director UCD School of Electrical and Electronic Engineering

Liam Freeman

Stage 2, ME Biomedical Engineering

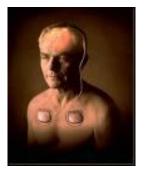
Sarah McMahon, BSc, ME

ME Biomedical Engineering Graduate, UCD, 2024. Graduate Software Engineer, ResMed.

Biomedical Engineering

- Biomedical Engineering
 'The application of engineering principles to understand, modify or control biological systems'
- Wide variety of application areas
 Biosignal, bioimaging, and data analysis
 Biosensors, brain computer interfaces
 Rehabilitation engineering, orthopaedics
 Biomechanics & sports performance
 Biomaterials, cell, and tissue engineering
 Medical device design

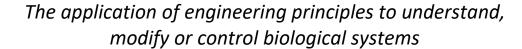
Foundation in Electrical/Electronic and Mechanical Engineering



Cochlear implants

Pacemakers

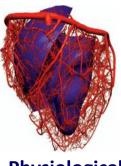
Deep brain stimulation

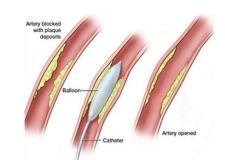


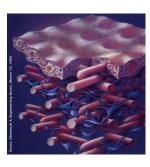
Gait analysis

Rehabilitation robotics

Biomedical Engineering


Hip implants


Biomedical signal processing


MR imaging

Physiological modelling

Angioplasty

Tissue engineering

rish Medtech Association

Strategy 2022 - 2025

Ireland continues to be a leading global hub for medtech

1st

B

Ireland is the no. 1 exporter of contact lenses from the EU and globally.

1st

Ireland is the no. 1 exporter of stents in the EU and globally.

2nd

Ireland is the 2nd largest exporter of medtech in Europe.

4th

Ireland is the 4th largest exporter of artificial joints in the EU.

4th

Ireland is the 4th largest exporter of diagnostic reagents from the EU.

14th

14 of the world's global 15 medtech companies are in Ireland.

450

42,000 directly employed in medtech across 450 companies making it the largest employer of medtech professionals in Europe, per capita.

12BN

Annual exports of c.€12.6 billion.

75%

75% of global medtech companies with operations in Ireland are carrying out R&D.

29

Irish Medtech Association Strategy 2022 – 2025

Defining Ireland's medical technology sector

Medical technology companies are defined as companies that:

- Design and/or manufacture medtech products and/or solutions, including software and hardware for healthtech.
- Manage significant international shared services from Ireland.
- · Directly service the medtech sector.

The sector is diverse, and the following seven broad categories have been established to describe and the sector in Ireland:

1. Diagnostic

Devices or software used to identify a disease, condition, or injury.

2. Ophthalmic

Diagnosis and treatment of conditions relating to the eye.

3. Vascular/ Endovascular

Relating to the treatment of vascular disease.

4. Orthopaedic

Relating to the treatment of musculoskeletal system including muscles, bones, joints, ligaments, and tendons.

5. Hospital/ Homecare

Other segments of the market not captured here such as respiratory, surgical devices, minimally invasive devices and so forth.

6. Neurology

Concerning disorders and diseases of the nervous system including the brain and spinal cord, peripheral nerves and muscles.

7. Service

Outsourced function to a third party such as product development, design, manufacturer and generation of intellectual property.

Irish Medtech Association Strategy 2022 – 2025

Defining Ireland's digital healthtech sector

The digital healthtech sector in Ireland is diverse and the following nine broad headings have been established to describe and categorise the sector in Ireland. These categories broadly reflect solution types to offer a consistent view of digital health activity in Ireland.

1. Connected medical devices

Wearable and wireless medical devices; software driven diagnostic products; therapy delivery devices; biometric sensors.

4. Personalised healthcare

Precision medicine; personalised support, symptom management and interventions; Clinical decision support solutions.

7. Connected care management

Care management platforms, staffing, and financial management solutions.

2. Digital therapeutics

Software driven therapeutics.

atient 6. Health Information

Electronic medical record systems; electronic prescribing and order entry systems; consumer health IT applications

3. Mobile health

Wellness, fitness trackers.

nutrition and lifestyle apps;

virtual health assistants:

healthcare coaching.

Technology (HIT)

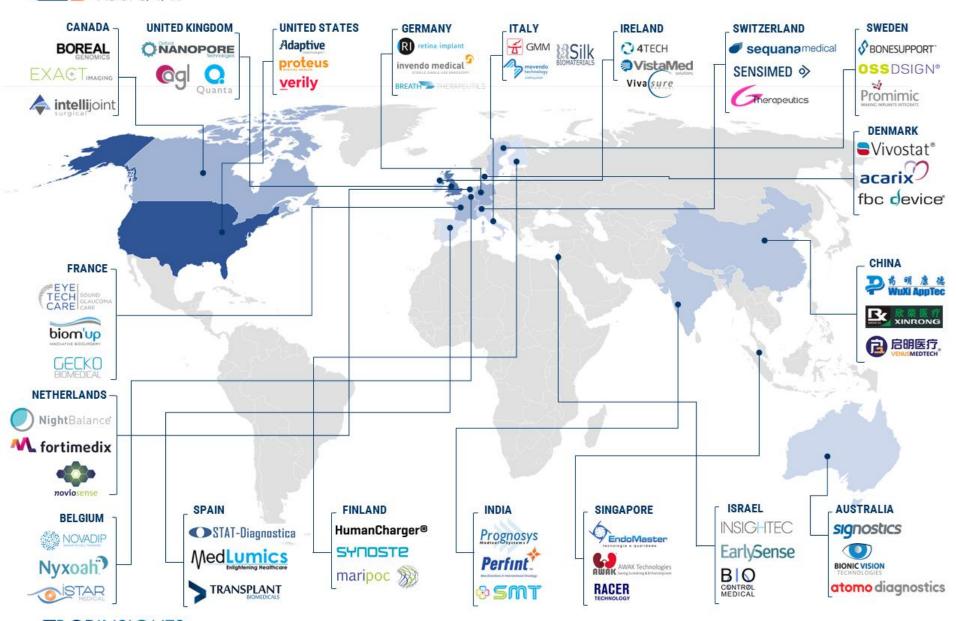
(mHealth) and wellness

5. Remote patient monitoring & telehealth

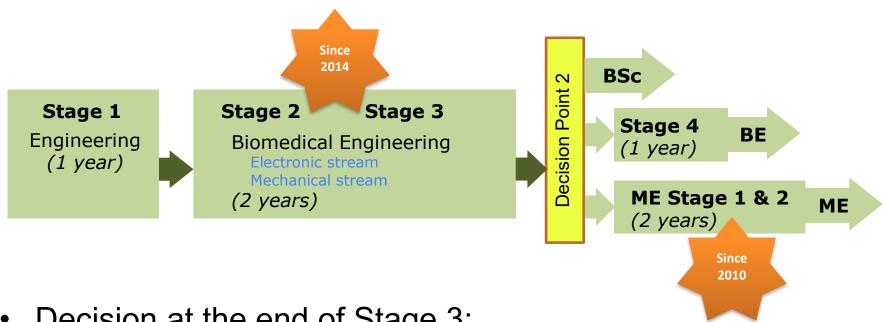
Remote patient monitoring solutions; medication adherence tools; telemedicine virtual visits and remote care programmes.

8. Data, analytics and cyber security

Patient data hosting; encryption and cyber security; Al and predictive analytics; digital biomarkers.


9. Technology solutions and infrastructure

ICT services and infrastructure: IoT solutions.


"450 companies employing 42,000 people to deliver €12.6 billion in medtech exports"

MOST WELL-FUNDED MEDICAL DEVICE COMPANIES ACROSS THE GLOBE As of 5/4/17

Biomedical Engineering pathways at UCD

- Decision at the end of Stage 3:
 - Graduate with **BSc** (Engineering Science)
 - Progress to Stage 4 of BE in Biomedical Engineering
 - Or, if eligible (weighted GPA ≥ 2.8):
 - Progress to Stage 1 of **ME Biomedical Engineering** programme 3.

BSc: Bachelor of Science BE: Bachelor of Engineering ME: Master of Engineering

Programme Steering Committee

Dr. Eoin O'Cearbhaill Centre Director & Academic Principal Investigator School of Mechanical & Materials Engineering VIEW PROFILE

Full Professor Niamh Nowlan Steering Committee Member & Academic Principal Investigator School of Mechanical & Materials Engineering VIEW PROFILE

Dr. Giacomo Severini Steering Committee Member & Academic **Principal Investigator** School of Electrical & Electronic Engineering VIEW PROFILE

Dr. Simon Kelly Steering Committee Member & Academic Principal Investigator School of Electrical & Electronic Engineering VIEW PROFILE

niamh.nowlan@ucd.ie

simon.kelly@ucd.ie 📞 +353 1 716 1803

Dr. Donal Holland Steering Committee Member & Academic **Principal Investigator** School of Mechanical & Materials Engineering

Dr. Fiona Freeman Steering Committee Member & Academic **Principal Investigator** School of Mechanical & Materials Engineering VIEW PROFILE

Dr. Emer Dohenv Steering Committee Member & Academic **Principal Investigator** School of Electrical & Electronic Engineering

Dr. Elaine Corbett Steering Committee Member & Academic **Principal Investigator** School of Electrical & Electronic Engineering

VIEW PROFILE

VIEW PROFILE

corbette@ucd.ie 📞 +353 1 716 1963

Prof. Madeleine Lowery Centre Co-Director, Head of Subject & Academic Principal Investigator School of Electrical & Electronic Engineering

VIEW PROFILE

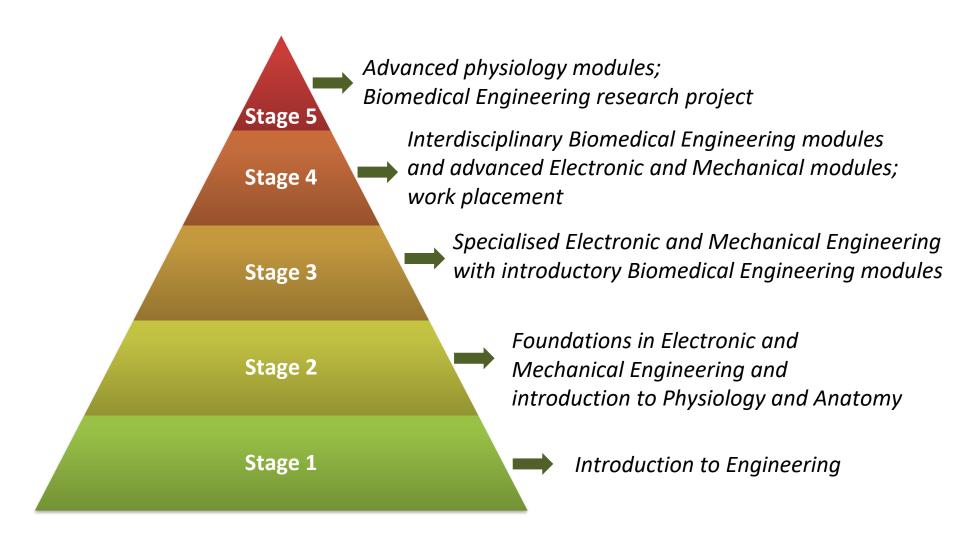
Dr. Stephen Redmond Steering Committee Member & Academic Principal Investigator School of Electrical & Electronic Engineering

stephen.redmond@ucd.ie 📞 +353 1 716 1929

Dr. Stephen Thorpe Steering Committee Member & Academic **Principal Investigator** School of Medicine

VIEW PROFILE

stephen.thorpe@ucd.ie 📞 +353 716 6812



Dr. Tom Flanagan Steering Committee Member & Academic Principal Investigator School of Medicine

VIEW PROFILE

VIEW PROFILE

UCD Biomedical Engineering programmes

Stage 2 Biomedical Engineering modules

Trimester	Module Code	Module Title	Credits	Level
Autumn	MATH 20290	Multivariable Calculus for Engineers	5 Credits	level: 2
Autumn	EEEN 20020	Electrical & Electronic Circuits	5 Credits	level: 2
Autumn	MEEN 20010	Mechanics of Fluids I	5 Credits	level: 2
Autumn	PHYS 20040	An Introduction to Physiology	5 Credits	level: 2
Autumn	EEEN 20010	Computer Engineering I	5 Credits	level: 2
Autumn		Elective	5 Credits	
Trimester	Module Code	Module Title	Credits	Level
Spring	EEEN 20030	Engineering Electromagnetics	5 Credits	level: 2
Spring	STAT 20060	Statistics and Probability for Engineers	5 Credits	level: 2
Spring	MEEN 20040	Mechanics of Solids I	5 Credits	level: 2
Spring	MEEN 20030	Applied Dynamics I	5 Credits	level: 2
Spring	MEEN 20070	Materials Sci & Eng I	5 Credits	level: 2
Spring		Option	5 Credits	

Options

Trimester	Module Code	Module Title	Credits	Level	
Option Modules*					
Spring	EEEN 20040	Electronic Circuits	5 Credits	level: 2	
Spring	MEEN 20060	Mechanical Engineering Design I	5 Credits	level: 2	
		In-Programme Electives			
Autumn	MEEN 20020	Manufacturing Engineering I	5 Credits	level: 2	
Autumn	MEEN 20050	Heat Transfer	5 Credits		
Spring	BSEN20190	Intro to Carbon and Energy Footprinting	5 Credits	level: 2	

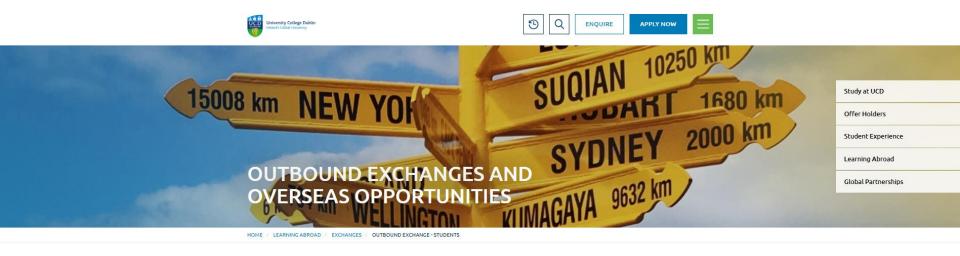
^{*} Rule for Options: Select 1 of 2 in Trimester 2 (Spring)

Students intending to pursue the <u>Mechanical Engineering stream</u> of Biomedical Engineering MUST select "MEEN20060 Mechanical Engineering Design I" as their Stage 2 Option.

Students intending to pursue the <u>Electronic Engineering stream</u> of Biomedical Engineering MUST select "EEEN20040 Electronic Circuits" as their Stage 2 Option.

Stage 3 Biomedical Engineering modules

Trimester 1	Module Code	Module Title	Credits	Level
Autumn	ACM30030	Multivariable Calculus for Engineers II	5 Credits	level: 3
Autumn	ANAT20090	Medical Sciences for Biomedical Engineers	5 Credits	level: 2
Autumn	EEEN30160	Biomedical Signal Processing	5 Credits	level: 3
Autumn		Option x2	See rules	
Autumn		Elective	5 Credits	
Trimester 2	Module Code	Module Title	Credits	Level
Spring	EEEN30150	Modelling and Simulation	5 Credits	level: 3
Spring	EEEN30180	Bioinstrumentation	5 Credits	level: 3
Spring	MEEN30160	Biofluids	5 Credits	level: 3
Spring		Option x2	See rules	
Spring		Elective	5 Credits	

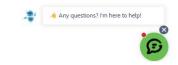

Bioelectronics stream "options"

Trimester	Module Code	Module Title
Autumn	EEEN30020	Circuit Theory
Autumn	EEEN30110	Signals and Systems
Spring	EEEN30030	Electromagnetic Waves
Spring	EEEN30050	Signal Processing: Theory and Applications

Biomechanics stream "options"

Trimester	Module Code	Module Title
Autumn	MEEN20020	Manufacturing Engineering I
Autumn	MEEN30090	Materials Science and Engineering II
Spring	MEEN30010	Applied Dynamics II
Spring	MEEN30020	Mechanics of Solids II

Study Abroad (Stage 3)



Exchange & Overseas Opportunities

Sample of previous host universities for Biomedical Engineering students

University of Auckland
University of Western Australia
McGill University
University of British Columbia
Georgia Institute of Technology

Purdue University
University of Illinois at Urbana-Champaign
University of Maryland
University of Miami
University of Virginia

Stage 4 Biomedical Engineering core modules

Trimester	Module Code	Module Title	Credits	Level
YEAR	EEEN30240	Professional Engineering Project	15 Credits	level: 3
Autumn	MEEN40600	Medical Device Design	5 Credits	level: 4
Autumn	MEEN40620	Biomechanics	5 Credits	level: 4
Autumn	MEEN40630	Biomaterials	5 Credits	level: 4
Autumn		Options x2	10 Credits	
Trimester	Module Code	Module Title	Credits	Level
Spring	MEEN41410	Tissue Engineering	5 Credits	level: 4
Spring	EEEN40070	Neural Engineering	5 Credits	level: 4
Spring	EEEN40350	Rehabilitation Engineering	5 Credits	level: 4
Spring		Options x1	5 Credits	

UCD Biomedical Engineering Master of Engineering Degree

ME Biomedical Engineering

Duration: 2 years

Workload: 120 credits

Entry: GPA greater than 2.8 in Biomedical/Electronic/Electrical/Mechanical Engineering

Accredited by Engineers Ireland

6-8 Month Professional Work Experience and 25 credit research project

Sample modules:

Neural Engineering
Rehabilitation Engineering
Machine Learning For Engineers
Biosensors & Actuators
Biomechanics & Mechanobiology
Cell Culture & Tissue Eng

Medical Sciences for Biomedical Engineers

Biomechanics

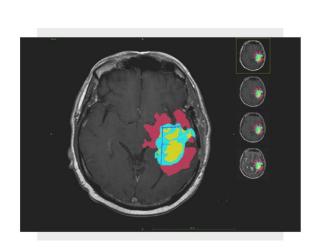
Biomaterials

Medical Device Design

Experimental design and statistics

Bioinformatics

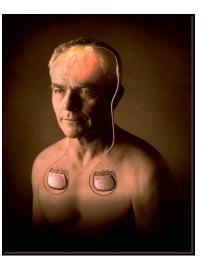
Regulatory Affairs in Science


ANAT20090 Medical Sciences for Biomedical Engineers

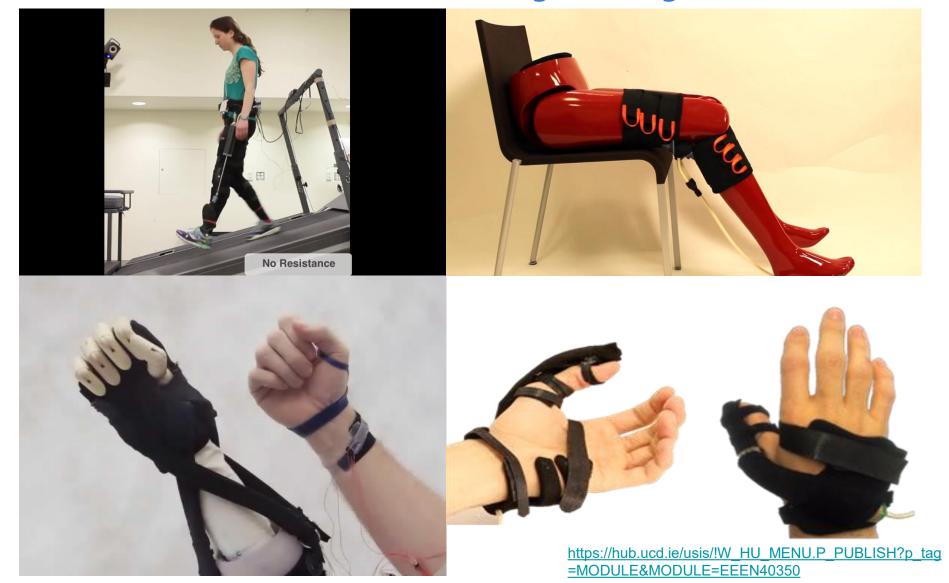
Bioelectronics stream

Rehabilitation Robotics

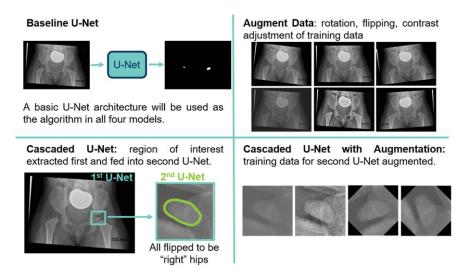
Machine Learning


Biosensors & Actuators

Bioinstrumentation



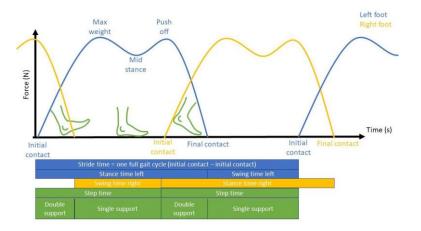
Neuromuscular Stimulation

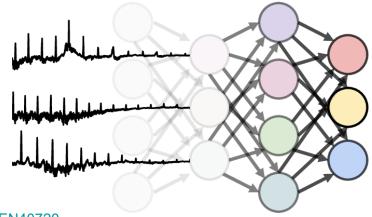


Neural Engineering

EEEN40350 Rehabilitation Engineering

EEEN40720 Machine Learning for Engineers

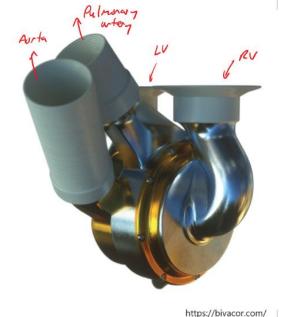



Understand how to apply ML methods to engineering problems.

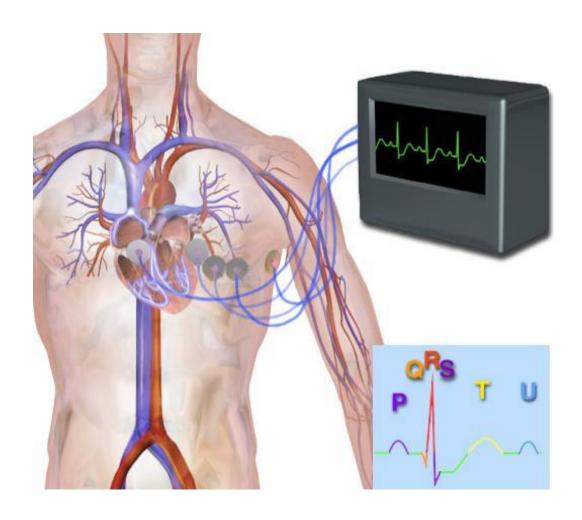
Deep understanding of a range of machine learning algorithms.

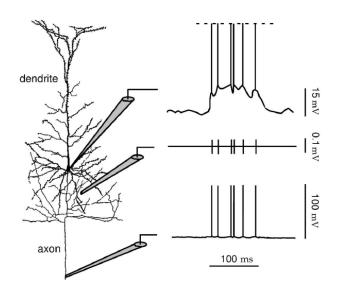
Best practice methods in training, testing and evaluating ML models.


Biomedical applications, e.g. Gait, ECG, Sleep



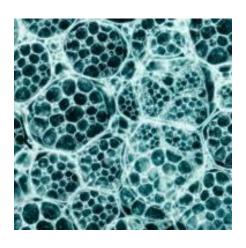
EEEN40730 Biosensors and Actuators

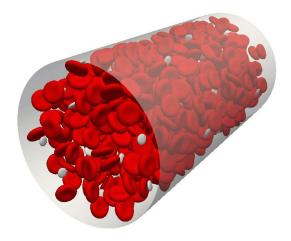




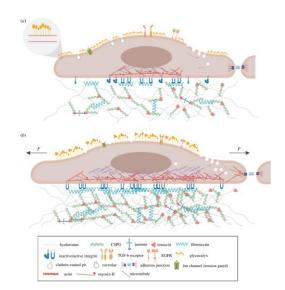
https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag=MODULE&MODULE=EEEN40730

EEEN30180 Bioinstrumentation



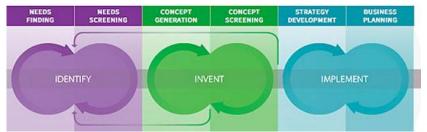

Biomechanics stream

Medical Device Design


Biomaterials

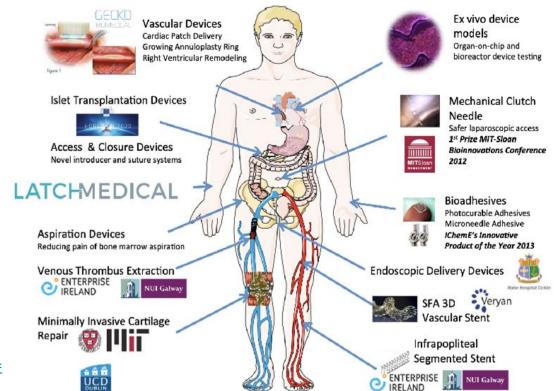
Biofluids

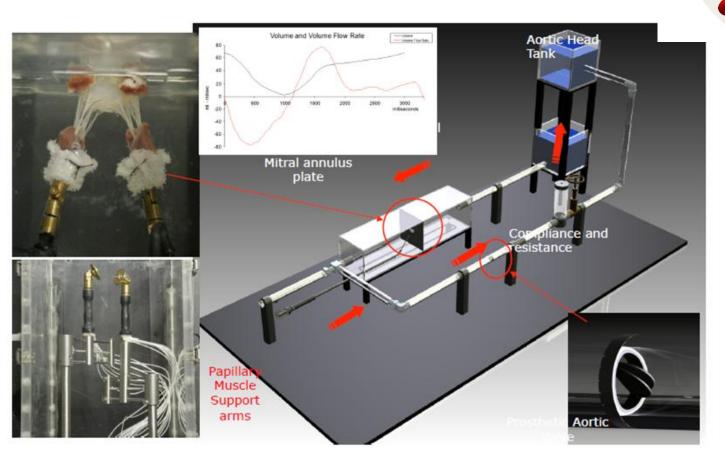
Movement Biomechanics

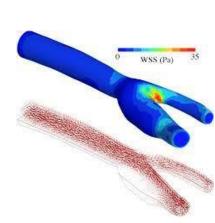

Tissue Biomechanics

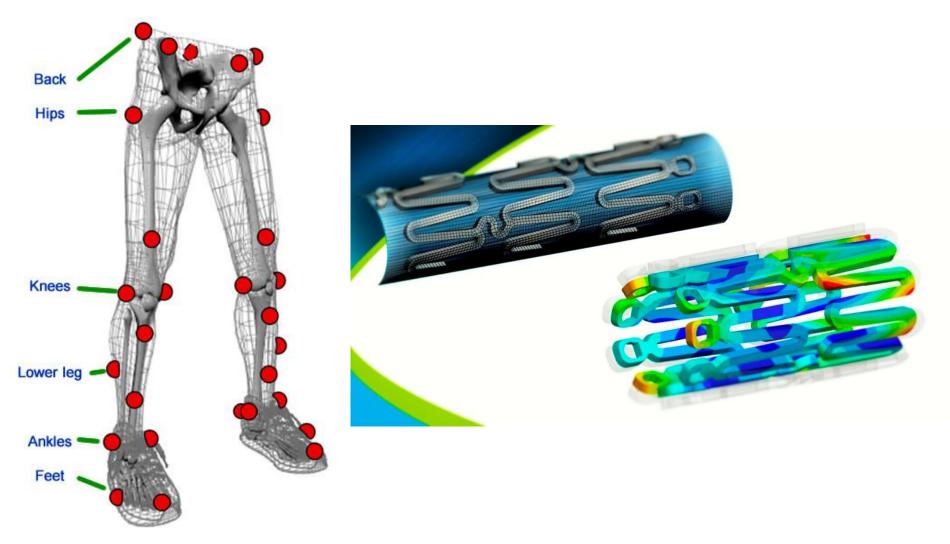
MEEN40600 Medical Device Design

BIODESIGN The Prod

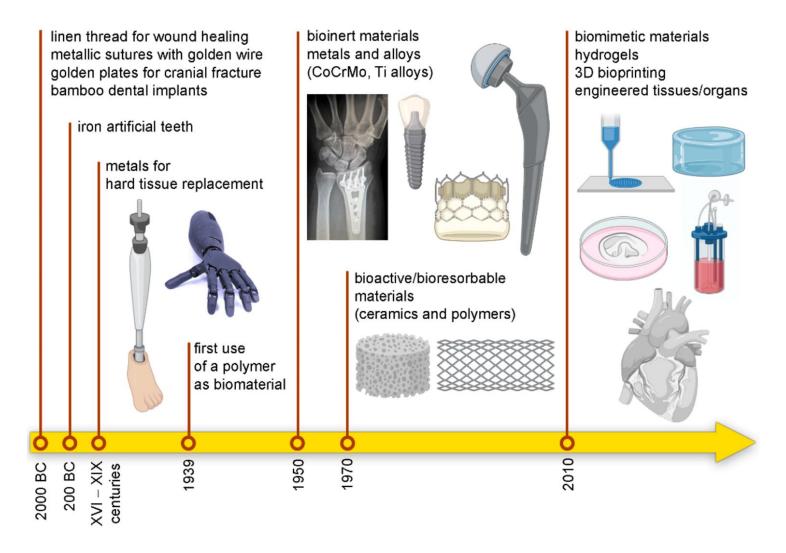

The Process of Innovating Medical Technologies






https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag= MODULE&MODULE=MEEN40600

MEEN30160 Biofluids



MEEN40620 Biomechanics

MEEN40630 Biomaterials

ME Biomedical Engineering Year 1

Semester 2: 30-Credit Professional Work Placement January - August

Abbott A Promise for Life

Changing lives

with every breath

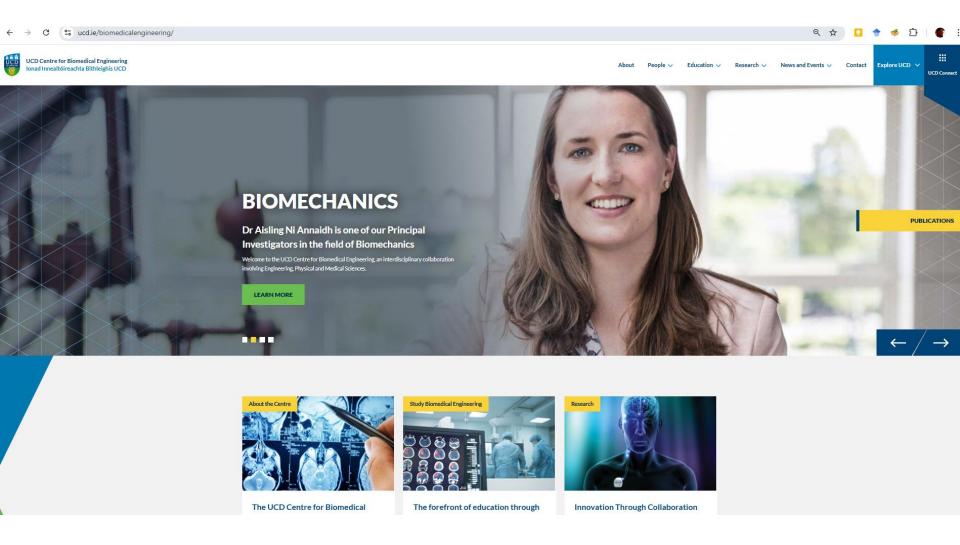
GE Healthcare

Employer testimonials (work placements)

'Also, just a note that we were blown away by the quality of the applications from UCD this year - it was very tough choosing between them at both interview and offer stages. The UCD students really stand out from the other candidates (and we had applicants from all over Ireland and around Europe).'

Shimmer Technologies

'It's rarely I feel the need to go into writing on feedback directly to Universities in relation to student placements we receive here in Boston Scientific, in fact this will be the first time. However, in the case of your Masters students who have just finished placements with us here in the past few weeks..., I feel the need to specifically highlight that these students were of a stand-out nature and not only developed considerably themselves during their placements, but contributed very well to our business — in fact to the extent that they will leave a vacuum behind them now that they have returned to college...As is the case with students of the standard, they are fast learners, very intelligent, constantly ask the right questions and always bring new perspectives. In addition to this, however, what really made these students stand-out for me was their level of enthusiasm, engagement, perseverance, thoroughness, ability to integrate within the team and their strong work ethic.'


Boston Scientific

Sample ME Projects (2025/2026)

- Biomechanical Considerations of Menstrual Cups
- Non invasive skin cancer detection with surface wave propagation
- Is there anything to worry about with having metal in your body?!
- Mechanical characterisation of brain tissue using nanoindentation
- Assessment of spheroid mechanical properties as an in vitro diagnostic for pancreatic cancer
- Understanding the influence of collagen extraction method on the properties of collagen and produced collagen devices
- Physicochemical and biological characterisation of collagen-based granular hydrogels
- Can response vigour give insights into sensorimotor processing?
- Neural mechanisms of the effort-reward trade-off
- Analysis of EEG during sleep, and development of a sleep staging algorithm using EEG headband data.
- Investigating the relationship between tongue strength and muscle activity during swallowing
- Investigating the neural control of respiration using intramuscular coherence
- Optimising the Anti-Migration Performance and Removal of Subdermal Contraceptive Implant Devices
- Development of a 3D bio-printed model of pancreatic cancer mimicking tumour and stroma stiffness gradients
- Development of Atraumatic Intracranial Retractors for Paediatric Neurosurgery
- "Gait as a character trait. Inverse Optimal Control formulation for investigating subconscious individual preferences in gait patterns."
- Walking while sitting. Designing realistic gait trajectories using the HaCT cycling robot
- Computational Medical Imaging and Diagnostics: Text-Guided Iterative Concept Learning for Cardiac MRI Analysis
- Self-Supervised Representation Learning for Cardiac MRI Analysis
- Sleep and activity analysis in a rodent model of deep brain stimulation in Parkinson's disease
- Modelling and testing the effects of electrical stimulation on tissue regeneration in 3D printed conductive implants for neurotrauma repair
- Motor unit tracking using high-density surface electromyography
- Microstructural Evolution & Mech. Properties of Hybrid LPBF-HIP Ti-6Al-4V Shell-Lattice-Core Structures Tailored for Enhanced Productivity
- How do we deal with the epidemic of osteoporotic wrist fractures?
- Using machine learning to optimise the design of organoid culture substrate materials and unravel the relationship between micromechanics and cell differentiation in organoid culture
- Grasp accuracy and gaze behaviour in closed loop myoelectric prosthesis control
- Effect of fatigue on lower limb biomechanics of repeated jumping in female soccer players
- Sense of agency for myoelectric control
- Discovering the Mechanisms of Human Choice History Biases
- Temperature compensation for optical tactile sensing circuits
- Estimating energy expenditure in elite athletes to monitor relative energy deficiency in sport (REDS)
- Miniaturising an optical tactile sensor for robotic and prosthetic applications

UCD Centre for Biomedical Engineering

UCD Biomedical Engineering Twitter

X

Home

Explore

Notifications

Messages

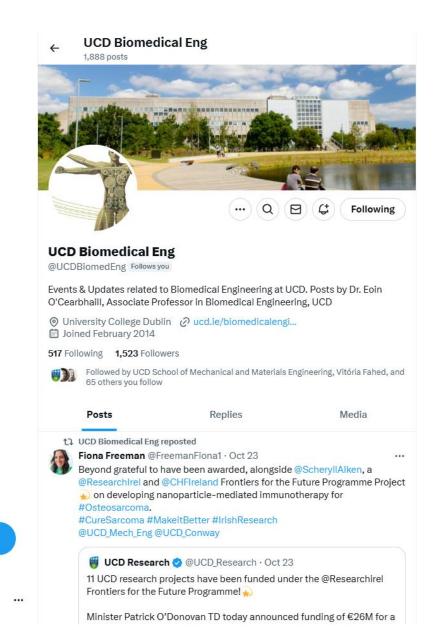
Bookmarks

Communities

Verified Orgs

Post

Stephen Redmond @S J Redmond


Premium

Profile

More

Lists

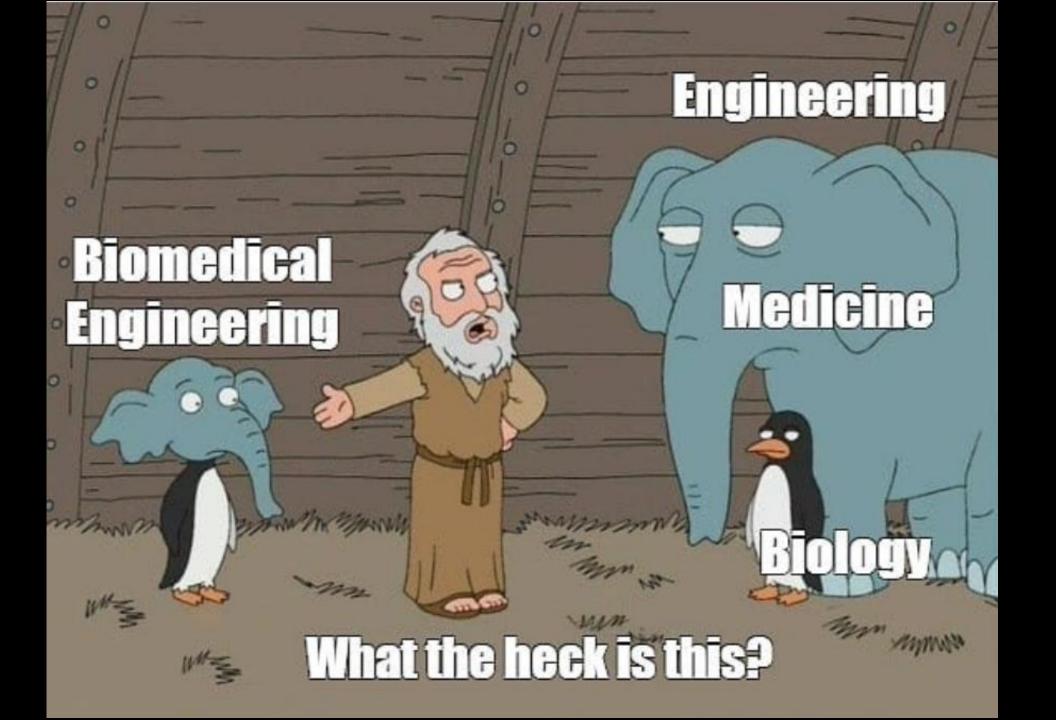
Jobs

UCD Biomedical Engineering

Questions?

UCD Biomedical Engineering

The perspective of students, past and present!...



My Biomedical Engineering Experience

Liam Freeman

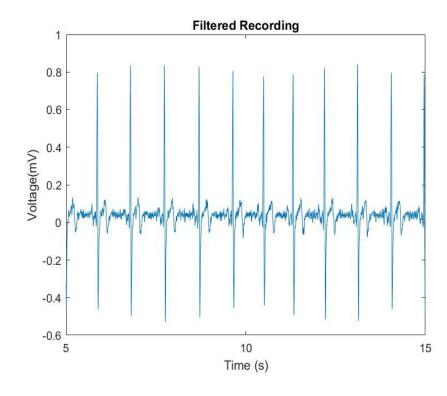
Stage 5 ME Biomedical Engineering Student

liam.freeman@ucdconnect.ie

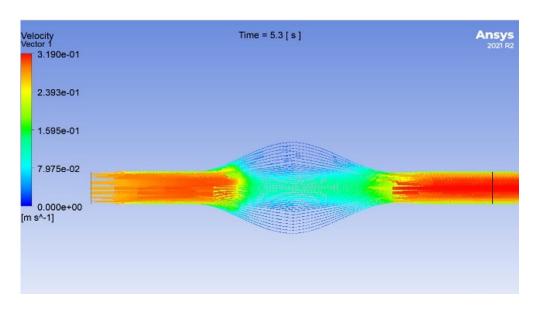
Why I Chose Biomedical Engineering?

"Biomedical engineering is the application of engineering principles to biology and medicine to solve problems in healthcare" – ChatGPT

Here are some common engineering principles:


- Conservation of energy and mass
- Systems analysis and modelling
- Mechanics (statics, dynamics, and materials)
- Electrical circuit theory
- · Thermodynamics and heat transfer

Modules & Projects


Electrical & Electronic

Bioinstrumentation

Mechanical

Fluid Dynamics & Biofluids

Note: Both Stage 3 modules

My Professional Work Experience (Stage 4)

ME Program - Professional Work Placement

Pros:

- Experience in the field
- Networking
- Social life
- Opportunity to get out of Dublin
- YOU GET PAID!!!

Cons:

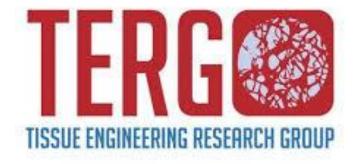
You might not want to come back

Thesis Project (Stage 5)

"Modelling and testing the effects of electrical stimulation on tissue regeneration in 3D printed conductive implants for neurotrauma repair."

Using electrical signals to help damaged nerve tissue grow and repair

An Electric Fertilizer for nerve cells


Thesis Project (Stage 5)

Collaboration:

Thanks for Listening!

Any Questions?

Working in a Medical Device Company

Sarah McMahon

Graduate Software Engineer - Resmed

Introduction

BSc Mechanical Engineering (2019-2022)

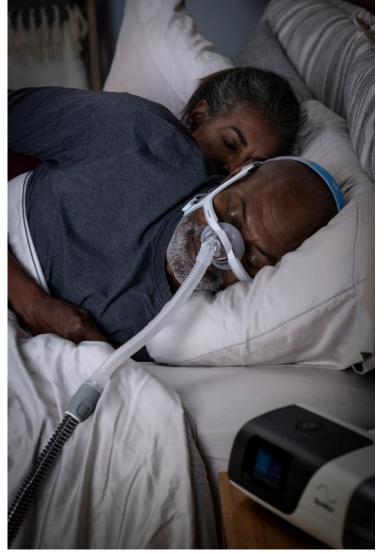
ME Biomedical Engineering (2022-2024)

Graduate Software Engineer in Resmed (March 2025-current)

My time in UCD

Design and develop medical devices to treat and diagnose sleep apnea

Sleep apnea is a condition where people stop breathing while the are sleeping


A PAP treats patients by blowing air into their lungs.

The pressure from the air ensures airways stay open during sleep.

Resmed - PAP Device

Devices software team - Write the code which runs on the PAP device

Technical Skills

- Coding in C++
- Coding in Python

Soft skills

- Working as part of a team
- Having initiative
- Ability to learn new skills

Devices software team - Write the code which runs on the PAP device

What teams do I work with day to day?

Algorithm team – Analyse data and develop new algorithms for treatment and detection

Software team – Implement these algorithms on the devices

Verification & Validation (V&V) team — Run tests to ensure the device is working.

What teams do I work with day to day?

Algorithm team – Analyse data and develop new algorithms for treatment and detection

Software team – Implement these algorithms on the devices

Verification & Validation (V&V) team – Run tests to ensure the device is working.

Other teams involved in PAP devices

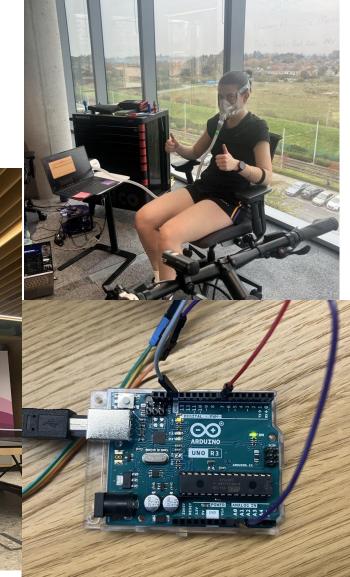
Mechanical Engineering

Electrical Engineering

Systems Engineering

Non-engineering teams

Favourite things about working in Resmed


Doing work which makes an impact in peoples' lives

Welcoming/helpful coworkers

Opportunity to innovate

Thank you!

